By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information.
Back
Publication
·
November 24, 2025

Interplay between anisotropic strain, ferroelectric, and antiferromagnetic textures in highly compressed BiFeO3 epitaxial thin films

Appl. Phys. Lett. 124, 242902 (2024)

Bismuth ferrite (BiFeO3) thin films were epitaxially grown on (110)- and (001)-oriented NdGaO3 single crystal orthorhombic substrates by pulsed laser deposition. The films grown on NdGaO3(110) are fully strained and show two ferroelectric variants that arrange in a stripe domain pattern with 71° domain walls, as revealed by piezoresponse force microscopy. We explored their antiferromagnetic textures using scanning nitrogen-vacancy magnetometry. Surprisingly given the large compressive strain state, the films still show a spin cycloid, resulting in a periodic zig-zag magnetic pattern due to the two ferroelastic variants. The films grown on NdGaO3(001) are also fully strained, but the (001) orthorhombic substrate imposes a strongly anisotropic in-plane strain. As a consequence, the ferroelectric polarization exhibits a uniaxial in-plane component, parallel to the b-axis of the substrate. The ferroelectric domain pattern consists of 109° charged domain walls between the two selected ferroelastic variants. This anisotropic strain impacts the magnetic state of BiFeO3 and leads to a simpler spin texture defined by a single propagation vector for the spin cycloid. In both cases, electric-field control of ferroelectric domains tends to favor a transition to a canted antiferromagnetic order. These results reveal that the cycloidal structure of BiFeO3 can undergo large compressive strain and open further electrical means to tune the magnetic state of this room-temperature multiferroic compound.

Read the full text

Contact us

Feel free to contact us any time.
We will get back to you as soon as we can !

Thank you ! Your message has been received !
Oops ! Something went wrong while submitting your message...